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mperfect gold standard” in Clinical Trials
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Block 1: Liver biopsy as

Histopathology assessment is required for enrollment and evaluations of endpoints in clinical trials (CTs)

1) Inter- & intra-rater variability of biopsy assessment (12l
- 46.3% patients in MASH clinical trials did not meet enroliment criteria upon re-
evaluation by 2nd pathologist
- Variability in assessment of endpoints and inclusion criteria reduce study power
of CTs by 50%

2) Ordinal grading system for continuous disease severity:
- Errors around the boundaries of the grades/stage
- Not sufficient to capture early changes in treatment response
- Difficult to quantify early changes and their extent

Unmet Needs:

#1. Objective, automated & reproducible tool for biopsy assessment
#2. Refined grading system to allow detection and quantification of early changes in
treatment response

[1] Davison, B. A. et al. "Suboptimal reliability of liver biopsy evaluation has implications for randomized clinical trials." J. Hepatol. (2020).
[2] Brunt, E. M. et al. "Complexity of ballooned hepatocyte feature recognition: defining a training atlas for artificial intelligence-based imaging in NAFLD”. J. Hepatol. (2022)



Al-Solutions: Automated and Robust Biopsy Assessment
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Al-enables robust assessment of enrollment criteria, endpoints & treatment response

1) Al reached better agreement with pathologists’ consensus than any
individual pathologist:

Histologic feature

- For grading and staging of all histology features

AIM-MASH versus

consensus

Mean pathologist versus
consensus

- For assessment trial enrollment criteria and endpoints

Lobular inflammation

0.67 (0.64-0.71)

0.64 (0.62-0.67)

Ballooning

0.70 (0.66-0.73)

0.66 (0.63-0.69)

- 100% reproducibility (when tested on the same images)

Steatosis

0.74 (0.71-0.77)

0.69 (0.66-0.72)

Fibrosis

0.62 (0.58-0.65)

0.59 (0.57-0.62)

2) Al-based assessment of drug efficacy (ATLAS phase 2b) ;

> Original trial (manual biopsy) no statically significant difference in
response rates between the treated vs placebo group 8

> Al-based scoring: Z
- bigger difference between placebo vs treater group for all endpoints :
- statistically significant difference for one endpoint

— By removing the inter-rater variability, Al can help improve reliability of CTs
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3) Al-enabled continuous MASH scoring

> Al provides continuous scores that can detect mild histologic

changes happening within the range of single ordinal grade
> Continuous fibrosis score:
- Enable patient risk stratification within F3 & F4 stage
- Enable prediction of progression to cirrhosis & liver related
complication

= Refined Al-based continuous grading might be able to detect
the treatment response earlier than current histology
grading

Next steps:

> AIM-MASH is being evaluated by FDA & EMA as a drug
discovery tool for the use in clinical trials
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Block 2: Non-Invasive Tests (NITs) for MASLD screening & monitoring

Liver biopsy limitations:
- Not suitable for general population screening & sequential monitoring
- Might discourage patients from participating in CTs

Existing NITs did not yet replace biopsy

Fibrosis LSM MASLD
predicts predicts MASH
NASH NAFLD NASH-CRN outcomes outcomes MetALD

Future directions
¢ No biopsy (refine NITs)
e Approved therapies

e Update ICD coding

¢ Policy (WHO
VCTE  ELF MRE NFS CAP Shear wave Al histology SIS )
elastography Agile
o FAST First drug to show
Quantitative MAST improvement in fibrosis
ultrasonography MEFIB and approved by FDA (resmetirom)
FIB4 Microbiome s ali
MRS Treatment pipeline
MRI-PDFF NAFLD Semaglutide GLP1RA
Proteomics First landmark Public Health  Lanifibranor pan PPAR
randomized controlled Consensus Efruxifermin FGF21 analogue
drug trial (PIVENS) Pegozafermin FGF21 analogue

Figure: Timeline for the MASLD field. (Source Allen et al.: (2024))

Unmet Needs:

#1. Enhance accuracy of existing NITs to eliminate need for biopsy
#2. Identify new non-invasive biomarkers

Allen, Alina M., et al. "Envisioning how to advance the MASH field." Nature Reviews Gastroenterology & Hepatology (2024): 1-13.
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Application of Radiomics in MASLD

Systematic Review (Zamanian et al.: 2024)

> Demonstrate feasibility of Al-based image diagnosis
- MASLD diagnosis: AUC=0.98

- MASH diagnosis AUC = 0.80
> Mostly retrospective studies, smaller cohorts

Radiomics for Fibrosis Staging:

Shear wave elastography (SWE) (Wang et al.: 2019)

> Prospective multi-center study
- Cirrhosis (F4): AUC = 0.97
- Advanced fibrosis (2F3): AUC=0.98
- Significant fibrosis (>F2): AUC = 0.85

> DL model outperforms standard liver stiffness measurement

Next steps for Al-based image diagnosis:

> Benchmark for objective comparison of Al methods

> Prospective clinical trial to asses their clinical potential

Liver fibrosis staging algorithm
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Computer Tomography Images (Choi et al 2018)

>~ Retrospective, single center
- Cirrhosis (F4): AUC = 0.95
- Advanced fibrosis (=F3): AUC=0.97
- Significant fibrosis (2F2): AUC = 0.96

Zamanian, et al. "Application of Al technigues for non-alcoholic fatty liver disease diagnosis: A systematic review (2005-2023)." Computer Methods and Programs in Biomedicine (2024).
Wang, et al. "Deep learning Radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis: a prospective multicentre study." Gut (2019)
Chol, et al. "Development and validation of a deep learning system for staging liver fibrosis by using contrast agent—enhanced CT images In the liver." Radiology (2018)



Al-guided Discovery of Non-invasive Biomarkers

RNA-seq Biomarkers (Conway et al.:, 2023 )

> Al-model: correlates MASH histology features & RNA-seq data to identify
5-gene signatures associated with sever fibrosis:

- differentiate between F3 and F4 patients at the gene-level
- predict progression to cirrhosis (in F3) and clinical events (in F4)

Blood plasma biomarkers: (Niu et al.:, 2022)

> Al model: correlate histology and mass spectrometry proteomics to
identify proteomics biomarker panels

> Detect fibrosis (=F2) and mild inflammation (=12) more accurately than
existing clinical assays (eg. TE or ELF)

> Predict of liver relevant events (c=0.90) and mortality (c=0.79)

Future MASLD Applications:

> Explore other modalities:, proteomics, lipidomics, metabolomics,
transcriptomics, genomics, epigenetic, pharmacokinetics
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Conway, Jake, et al. "Integration of DL-based histopathology and transcriptomics reveals key genes associated with fibrogenesis in patients with advanced NASH." Cell Reports Medicine (2023)
Niu, Lili, et al. "Noninvasive proteomic biomarkers for alcohol-related liver disease." Nature Medicine 28.6 (2022): 1277-1287.




1) Personalized, Risk-based Screening Schedule

Efficient screening schedule:

> Balance between early detection vs over-screening
> Risk factors vary across patients

> Risk fluctuates over time even for the same patient

Al-optimized personalized screening schedule (Yala et al. 2022)

Retrospective
patient
trajectory

-
i
2

- Al: predict risk of future events from available past patient data | | ! | 4’
- Recommend personalized follow-up schedule based on the predicted reiectoree.
patient’s risks 6 months early
T . . . Tempo-mirai ®
- Al-schedule was significantly more efficient than annual screening
Annual

. . Biennial < ).
Future MASLD Applications: 12-month delay
- Optimize screening schedule w.r.t specific NIT (Yala etal.:)

- Determine optimal combination or sequence of NIT
- Include other risk factors ( e.g. type 2 diabetes)

Yala, Adam, et al. "Optimizing risk-based breast cancer screening policies with reinforcement learning." Nature medicine (2022)



w, Radiology Al-based Multimodal Data Fusion

Clinical Context Matter

> Disparities in patient outcomes even with similar diagnosis
- e.g baseline comorbidities such as type 2 diabetes

Histology > Patient unique state described by range of modalities

> Volume and complexity of data: challenging to manually assess patient
state under larger clinical context

Gallbladder

Potential of Al-based data fusion

> |dentify relevant patterns in complex medical data and associations across
modalities
> Al can leverage complementary and shared information in diverse

modalities to provide more accurate and robust predictions
Metabolomics

Wearable devices Implication for MASLD

> Multimodal data for improved patient risk stratification
> Integrate multiple NITs to improve screening accuracy
> Novel multimodal biomarkers for diagnosis & prognosis
> Personalized treatment plans

Familial history



Conclusion

> Al give us "powers" to aid medical interventions at speed, scale & cost
that was impossible before

> Lot of challenges, lot of potential to serve patients & clinicians

Path Forward:

Data sharing accelerates innovation:
- The better and larger datasets - the better Al models
- E.g. PathAl used data from 6 CTs

Active participation of all stakeholders:

- Bring together computer scientist and medical professionals
- ldentify medical needs and meaningful Al solutions

- Paris MASH - fostering the interdisciplinary collaboration

- Thanks to organizers and all of you
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